

HCN-003-001515

Seat No.

B. Sc. (Sem. V) (CBCS) Examination

October - 2017

Mathematics: Paper - 503 (A)

(Discrete Mathematics & Complex Analysis - I)

Faculty Code: 003

Subject Code: 001515

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions: (1) All the questions are compulsory.

- (2) Numbers written to the right indicate full marks of the question.
- 1 Attempt all the questions:

- (1) State Idempotent law.
- (2) What is the value of the sum of all minterms in n-variable?
- (3) What is the value of $m_i * m_j$ if m_i and m_j are distinct minterms in n variables.
- (4) State modular inequality.
- (5) If a is an atom of a Boolean algebra $(B, *, \oplus, ', 0, 1)$ then $\forall x \in B$, what are the possible values of a * x?
- (6) State Isotonicity property.
- (7) How many squares are there in a Karnaugh map of an expression containing three variables?
- (8) State absorption law.
- (9) Write maximal elements for the POSET $(\{2,3,4,6\}, D)$.
- (10) What is the value of a * 1 in a bounded lattice $(L, *, \oplus, 0, 1)$?
- (11) Write formula to find the length of smooth arc.
- (12) State Liouville's theorem.

- (13) What is the value of $\int_{c}^{c} \frac{z^2}{z-1} dz$; c:|Z|=2.
- (14) Write Cauchy Riemann condition for complex function f(z) = u + iv to be analytic.
- (15) State fundamental theorem for algebra.
- (16) What is the value of $\lim_{z\to\infty} \frac{2z+3}{z+i}$.
- (17) Write Laplace equation.
- (18) State Cauchy's inequality.
- (19) Write Cauchy Riemann condition in polar form for complex function f(z) to be analytic.
- (20) Write the formula to find $f'(z_0)$ for a complex function f(z) = u + iv.
- 2 (A) Attempt any three:

- (1) If a and b are distinct atoms of a Boolean algebra $(B,*,\oplus,',0,1)$ then prove that a*b=0.
- (2) For a non-empty set A if $X, Y \in P(A), X * Y = X \cap Y, X \oplus Y = X \cup Y$ then prove that $(P(A), *, \oplus)$ is a Lattice.
- (3) Define greatest element and maximal element in a POSET.
- (4) Obtain Minimal sum of product of the Boolean expression by $\alpha(x, y) = xy + xy'$ by Karnaugh map.
- (5) If $(B, *, \oplus, ', 0, 1)$ is a finite Boolean algebra and x is a nonzero element of B then prove that there exists an atom a in B such that $a \le x$.
- (6) Draw the Hasse diagram of (S_{60}, D) .

(B) Attempt any three:

9

- (1) State and prove distributive inequalities.
- (2) Prove that every chain is a distributive lattice.
- (3) In usual notation prove that 0 and 1 are the unique complements of each other.
- (4) If $(B, *, \oplus, ', 0, 1)$ is a Boolean algebra then prove that for any $x_1, x_2 \in B$ $A(x_1 \oplus x_2) = A(x_1) \cup A(x_2)$.
- (5) State and prove De Morgan's law for Boolean algebra.
- (6) Express the Boolean expression $(x_2 * x_3)$ as the product of its maxterms.

(C) Attempt any Two:

10

- (1) State and prove Stone's representation theorem of Boolean algebra.
- (2) Prove that in a complemented distributive lattice, the following are equivalent.
 - (i) a < b
- (ii) $a \wedge b' = 0$
- (iii) $a' \lor b = 1$
- (iv) b' < a'
- (3) If $(L, *, \oplus)$ is a lattice then prove that for any $a, b \in I$, $glb\{a, b\} = a * b$ and $lub\{a, b\} = a \oplus b$, with respect to partial ordering R on L.
- (4) State and prove Unique representation theorem of Boolean algebra.
- (5) Define direct product of two lattices and prove that it is a lattice.

3 (A) Attempt any **three**:

- (1) Prove that f'(z) = f(z), where $f(z) = e^z$.
- (2) Define: (i) Analytic Function (ii) Entire Function
- (3) Evaluate : $\int_0^{2+i} z^2 dz$.
- (4) Prove that $u = \sinh x \sin y$ is harmonic.

- (5) Evaluate : $\int_{C} \frac{dz}{z^2 + 4}$; C : |z i| = 2.
- (6) Define: (i) Jordan arc (ii) Contour.
- (B) Attempt any three:

9

- (1) Show that the function $\left(\frac{1}{z}\right)$ is analytic but not entire.
- (2) If u and v are conjugate harmonic functions then prove that the family of curves obtained by $u = c_1$ and $v = c_2$ are orthogonal.
- (3) Show that the Cauchy Riemann conditions are sufficient conditions for a complex function f(z) to be analytic.
- (4) Evaluate : $\int_{C} \frac{dz}{(z-1)(z-2)}$; C: |z| = 3.
- (5) In usual notation prove that $\left| \int_a^b f(z) dz \right| \le \int_a^b |f(z)| dz$.
- (6) State and prove Cauchy's fundamental theorem.
- (C) Attempt any Two:

- (1) Obtain Laplace equation in polar form.
- (2) Find an analytic function f(z) = u + iv such that u v = x + y.
- (3) State and prove Morera's theorem.
- (4) Show that u = 2x(1-y) is a harmonic function and find its conjugate.
- (5) State and prove Cauchy's integral formula.